
Notes on DigitalMicrograph dm3 / dm4 formats

Pavel Potapov, 2022

These notes refine and extend previous notes by Greg Jefferis and Chris Boothroyd.

The important difference between the dm3 and dm4 formats is that the former uses uint32 for

storing the lengths of data fragments, which is limited to 2GB, e.g. the images exceeding 2G cannot

be stored. The dm4 format uses uint64 with no practical limitations on size. In this notes, these two

variants are denoted as 4/8 bytes, uint32/uint64. The former should be used for the dm3 format and

the latter for the dm4 one.

The major body of a file consists of several tag groups

defining how the image information is interpreted and

displayed in DigitalMicrograph. According Bernard Schaffer,

only few of these tag groups (shown in the fig.) are

obligatory for reading a file. The rest are set to default when

first opening the file.

‘ImageDisplay’ tag should be 1 for images and 3 for line

profiles.

The image information is placed in the ‘ImageList’ group.

Several images can be stored in one file, for instance, line

profiles along certain line, image insets et cet. Those images

are enumerated in the ‘ImageList’ group as[0],[1],[2]… At

least one image is obligatory. All files I saw consist also of a

small thumbnail image, which is however not obligatory.

Inside each such enumerated tag group, there are subgroups

’ImageTags’ and ‘ImageData’. The former consists of

metadata (not obligatory) and the latter consists of data

itself. Then, in the ‘ImageData’ group there are ‘Calibrations’

subgroup (not obligatory), ‘Dimensions‘ (define the image

size in all dimensions, obligatory) subgroups and ‘Data’

(image as an array) tag. Also, tags ‘DataType’ and

‘PixelDepth’ are obligatory there. They point to the type of

elements in the image array (integer, float et cet.) and the

number of bytes for each element.

Tag ‘ImageRef’ indicates which image in the ‘ImageList’

group should be displayed.

How these tag groups are stored?

DigitalMicrograph binary files start with

a file header:

• 4 bytes, uint32 3 or 4 depending of whether it is the dm3 or dm4 format. It

seems that DigitalMicrograph determines the kind of the format from this note, not from the

file extension.

• 4/8 bytes, uint32/uint64 length of all tag groups. It does not include the file header

and the last 8 zero bytes.

• 4 bytes, uint32 byte order in tag notes. 0: big endian, 1: little endian

(standardly used in Windows). This should not be confused with the endian of the headers

notes, which are always in big endian.

Each tag group starts with

a group header:

• 8 bytes, uint64 Only in dm4: length of the group in bytes starting

from the end of the note. For some reasons, this note is absent in the groups of the root

folder but presents in all subgroups.

• 1 byte, uint8 1 or 0 indicating whether the group is sorted or not.

The exact meaning of this parameter is not fully clear. Assumedly, this means that group is

(or is not) sorted alphabetically. This parameter is important: when it is set incorrectly, file

opening might fail.

• 1 byte, uint8 1 or 0 indicating whether the group should be open

or not when browsing the tag structure. This parameter seems to be unimportant.

• 4/8 bytes, uint32/uint64 number of tags in the group.

Then a name header follows:

• 1 byte, uint8 20 or 21. The code 20 shows that a tag group

is expected, the code 21 shows that this is an individual tag.

• 4 bytes, uint32 length of the tagGroup/tag label in n bytes.

• (1 byte, uint8) n times Label of the tagGroup/tag in the 'utf8' or

'latin-1' coding. Some tagGroup/tag might have no names and the length of their labels is

correspondingly zero. When reading, DigitalMicrograph enumerates such tags as ‘0’, ‘1’, ‘2’…

In case of a tag group (code 20), a new group header follows and this may continue infinitely in a

matryoshka manner. If an individual tag is expected (code 21), we find next

A tag header:

• 8 bytes, uint64 Only in dm4: length of the tag in bytes starting from

the end of the note.

• 4 bytes, uint32 A marker ‘%%%%’ denoting the beginning of the tag.

• 4/8 bytes, uint32/uint64 length definition m. This shows how many numbers

is needed to describe the tag type.

o In a simplest case of a singular number, this is 1: just one code is needed to describe

the type of a number.

o In case of an array tag, we need 3 parameters to describe it: the first parameter

showing that this is an array (code 20), the second parameter is an array size and the

third parameter defines the type of array elements.

o In case of a tuple of n elements, the length definition equals 3+2*n. This is because

the type of a tuple and the types of each individual element need to be described.

For instance, for a tuple consisting of two float elements, this would be

uint32/uint64=15 (code of tuple), uint32/uint64 =0 (just delimiter), uint32/uint64 =2

(number of elements in the tuple), then twice [uint32/uint64=0 (delimiter),

uint32/uint64=6 (code of float32 type)]; totally 7 notes.

It is possible that more structures exist, but I was not able to figure it out.

• (4/8 bytes, uint32/uint64) m times numbers defining the type of a tag

Then the tag itself follows. This could be just one number consisting of several bytes as defined by

the type. Or, this could be a sequence of bytes forming an array according its type definition.

Finally, each dm3/dm4 file ends up with 8 zero bytes. This is an obligatory note and a file missing this

might fail in opening.

Coding of types:

Type codes in DigitalMicrograph files:

2 short int16

3 long int32

4 unsigned short uint16

5 unsigned long uint32

6 float float32

7 double float64

8 bool uint8

9 char uint8

11 long long int64

12 unsigned long long uint64

15 structure tuple

18 string

20 array

Type codes of DigitalMicrograph images:

1 short int16

2 float float32

3 complex complex64

6 char uint8

7 long int32

9 byte int8

10 unsigned short uint16

11 unsigned long uint32

12 double float64

13 complex complex128

14 bool uint8

23 thumbnail

One should distinguish the type codes used for reading/writing dm3/dm4 files and the types of

images used, for instance, in DigitalMicrograph scripting.

